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The functions of complex multicellular biological systems depend intimately on the spatial organization of their constituent cells [1]. As a
result, significant efforts have been made towards developing spatially resolved transcriptomics (SRT) platforms that can measure gene
expression levels while preserving spatial context, and these platforms have provided new insights into the mechanisms of Alzheimer’s
disease [2], embryonic development [3], and the tumor microenvironment [4].

SRT platforms have traditionally navigated a tradeoff between the number of profiled gene expression features and spatial resolution,
thereby limiting the size of individual SRT datasets. For example, platforms based on fluorescent in situ hybridization (FISH) [5, 6]
profile gene expression at the single-cell level but have traditionally been limited to profiling expression levels of a small subset of tens or
hundreds of pre-selected marker genes. On the other hand, sequencing-based methods, such as 10x Genomics Visum [7] and Slide-seq
[8]), provide whole-transcriptome measurements yet have traditionally been limited to profiling coarser-grained (e.g. 55 µm for Visium)
spots containing multiple cells. However, recent developments have enabled a significant scaling up of these platforms, with recent
works presenting FISH platforms that can profile at the near-transcriptome level [9] as well as sequencing-based platforms that operate at
near-cellular [10] or subcellular [11] resolution.

An important problem in the analysis of SRT datasets is clustering cells/spots into spatial domains (i.e., spatial regions with coherent gene
expression patterns). While a significant line of work exists for clustering analysis of scRNA-seq measurements (see [12] for a review),
such methods are not suitable for analyzing SRT data, as they discard spatial information and thereby may produce clusters that are not
spatially coherent. Thus, a recent line of work has developed methods that explicitly account for spatial information in the clustering
process using e.g. spatial Bayesian priors [13, 14] or graph-neural-network-based approaches [15–17]. Such methods have exhibited
notable improvements in performance over non spatially aware methods. However, these methods are not equipped to handle increasingly
large-scale SRT datasets generated by newer platforms, as they necessitate loading entire datasets into memory at once and thus exhibit at
least linear scaling in terms of memory usage as the number of samples and/or features increases.

As a first step towards resolving this issue, here we present GLaST (Graph embedding for Large-scale Spatial Transcriptomics data), a
scalable spatially aware embedding framework designed to facilitate the analysis of large-scale SRT datasets. GLaST leverages previous
work in large-scale graph embedding methods originally developed for social network applications [18], which have been adapted
previously to analyze dissociated scRNA-seq datasets [19]. We first applied GLaST to a standard spatial domain detection benchmark
dataset and found that it achieved comparable performance compared to previous state-of-the-art methods. We then evaluated GLaST’s
memory consumption for datasets with increasing numbers of samples, and found that it exhibited significantly lower memory usage
compared to previously proposed methods for spatial domain detection.

1 Overview of GLaST

As with other graph-based methods for spatial domain detection, we begin by constructing a graph G = (V,E) with vertices V and
weighted edges E that captures the similarity between samples both in terms of gene expression and spatial location. Here, our set of
vertices consists of one vertex for each sample (i.e., spot or cell) as well as one vertex for each gene expression feature. We then add
two types of edges to our graph. First, to capture spatial similarity between samples, we add an edge between two sample vertices if the
samples are spatially adjacent. Next, to capture similarity in terms of gene expression, we add edges between sample vertices and gene
feature vertices if a given sample expresses a given gene. Sample to gene edge weights was determined using the discretization procedure
of [19], which sets the weights in proportion to the normalized gene expression.

After constructing our graph, we then seek to learn an embedding of our dataset Θ ∈ R|V |×d consisting of embeddings θv ∈ Rd for each
vertex in our graph. We proceed to learn Θ following the approach proposed in SIMBA [19]. Specifically, for an edge e = (u, v), we let
se = (θu)

T θv denote the similarity score of e. We then optimize the following multi-class log loss

Le = −
(

exp(se)∑
e′∈N exp(se′)

· we

)
,
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where N is a set of “negative edges” (i.e., connections that do not exist in the true graph G) and we is the weight of edge e. By learning Θ
to minimize L, we encourage se = (θu)

T θv to be large for (u, v) ∈ E and se′ to be small for (u, v) /∈ E. Thus, embeddings of sample
nodes are encouraged to be close if the samples are both spatially adjacent and express similar sets of genes. We highlight that, unlike
previously proposed graph-based methods for SRT data, this procedure is amenable to optimization via minibatch gradient descent and
thus does not require loading full datasets into memory during optimization. After optimization, standard visualization methods and
clustering algorithms can be applied to embeddings of sample nodes to identify spatial domains. We illustrate this workflow in Fig. 1.
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Figure 1: The GLaST framework. A graph is first constructed such that each sample and each gene expression feature is represented as a
vertex. Edges are added between sample vertices if the samples are spatially adjacent, and between a sample vertex and a feature vertex
if that sample expresses the given gene feature. Low-dimensional representations of the vertices are then learned using scalable graph
embedding techniques, and the learned embeddings of sample vertices can subsequently be leveraged for spatial domain detection.

2 Results

Spatial Domain Detection: To evaluate the performance of GLaST, we applied it to a 10x Visium dataset containing SRT measurements
of 12 human dorsolateral prefrontal cortex (DLPFC) slices [20], which is commonly used for spatial domain detection benchmarking
[13, 15–17]. Each slice in this dataset has up to seven layers of grey and white matter that are manually annotated by human experts, thus
providing a set of ground truth spatial domain labels. Following previous work [16], for this dataset, we added edges between samples
indicating spatial adjacency in the GLaST input graph if the two samples were connected in a six-nearest-neighbors graph based on the
samples’ x and y spatial coordinates. In order to quantify GLaST’s performance, we clustered the GLaST embedding space for each slice
as determined by the optimized Leiden clustering procedure implemented in the single-cell integration benchmarking (scIB) package [21].
Then, we evaluated the agreement between the ground truth spatial domain labels using the adjusted Rand index (ARI). We compared
GLaST’s performance to that of SpaGCN [15], and STAGATE [16], two graph-neural-network based methods for spatial domain detection
that have recently claimed state-of-the-art results, as well as the non-spatially aware Louvain [22] algorithm as implemented in scanpy
[23]. We found (Fig. 2a) that GLaST achieved competitive performance compared to previously proposed spatially aware methods.

Scalability analysis: We next assessed GLaST and previously proposed spatially aware baseline models’ scalability in terms of memory
consumption. To do so, we assessed how much memory GLaST, SpaGCN, and STAGATE used when trained on a mouse embryo dataset
collected using the Stereo-seq platform [11]. In particular, we examined how each model’s memory usage varied when trained with a
random subset of spots for varying numbers of spots. We found Fig. 2b that GLaST exhibited significantly better scalability (i.e., lower
memory usage) compared to baseline models as the number of spots increased.
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Figure 2: (a) Performance of GLaST and baseline methods on the spatial domain detection task as measured by adjusted Rand index
(ARI). Median values are shown and are indicated as bold lines. (b) Memory usage versus number of spots for the Stereo-seq mouse
embryo dataset.
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