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MOTIVATION Step-by-step Procedure DISCUSSION
o Spaﬂa"y resolved transcriptomics (SRT) ° Step 1. CCTeate d %raph whose nOdeZC.?nﬁiSt of both  GLaST showed COmparabIe.per.forrT.]ance to the
technologies enable gene expression profiling while Spots and genes. S5pots are connected It they are current state-of—t.he-art,.vx./hlch implies SRT .datg can
retaining spatial context in tissues. adJacgnt, and a Spot anql d genetare connected if the be broken down into minibatches for training just as
» An important problem in the analysis of SRT sENE 15 expressedin a given spo other forms of data.
datasets is spatial domain detection (i.e., detecting e Step 2. Split graph data into mini-batch (containing
spatial regions with coherent gene expression both negative and positive edges) and train GLaST.
patterns) e Step 3. Post-training, feed graph into the encoder and
* Moreover, as SRT technology continues to evolve, get spatially aware embeddings of SRT expression NEXT STEPS
higher-resolution datasets from larger tissue data.
) Ir_leglonsrarer bgcorrlilngr avalla:jblem (ational * Step 4. Cluster the embeddings to obtain spatial * Attach decoder to GLaST model. We can add a
OWEVET, Previousty proposed computationa domains. decoder network to the model and train further with

methods' % 3 for spatial domain detection require

o a reconstruction loss term. This might increase the
full-batch training and are thus not scalable to 5

performance, and could enable our model to
large datasets. RESULTS "
. . erform additional downstream tasks, such as
 To facilitate the analysis of larger-scale SRT datasets, !Om utation and differential exoression analvsis
we investigated a scalable graph neural network * Human brain tissue data with . Cof\duct analysis with otherps atial omic>; déta
embedding model for analyzing SRT data. ground truth spatial domain y P '

We can extend our results to other spatial data,

labels from human experts. . . . . .
including proteomics, epigenomics, etc.

« Average 3,944 spots for 12

METHOD samples. g
* Only used 2,000 highly variable | P
. genes. E o
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